
PHYSICAL REVIEW E 85, 026110 (2012)

Cascading dynamics on random networks: Crossover in phase transition
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In a complex network, random initial attacks or failures can trigger subsequent failures in a cascading manner,
which is effectively a phase transition. Recent works have demonstrated that in networks with interdependent
links so that the failure of one node causes the immediate failures of all nodes connected to it by such links,
both first- and second-order phase transitions can arise. Moreover, there is a crossover between the two types
of transitions at a critical system-parameter value. We demonstrate that these phenomena can occur in the more
general setting where no interdependent links are present. A heuristic theory is derived to estimate the crossover
and phase-transition points, and a remarkable agreement with numerics is obtained.
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A networked dynamical system typically consists of a large
number of nodes or components interacting with each other
in a complicated manner. The heterogeneous structure of the
network and the intricate node-to-node interaction pattern
render the system vulnerable to a cascading type of dynamics,
where the failure of one or a few nodes can trigger failures
of a large number of nodes in an avalanching manner [1].
Real-world examples of cascading failures include large-scale
blackouts of power grids [2] and severe traffic jams on the
Internet [3]. In the past decade, many models were proposed to
understand the dynamics of cascading failures, and strategies
for preventing or mitigating failures were articulated [4–8].

It has been recognized that the interplay between structural
changes and the redistribution of traffic loads can play a
significant role in cascading failures. For example, a frequently
studied class of models is based on the redistribution of
traffic loads on the network, the destructive effect of which
can be magnified significantly by the highly heterogeneous
topology typically seen in complex networks [5,9]. In such a
case, disabling one or a few nodes that have overwhelmingly
more connections than an average node in the network can
reduce the network to small fragments. Cascading failures on
a global scale can also be induced by a local dependence among
neighboring nodes, as described by the sandpile model [10,11],
the dynamical flow model [12], and the model of activation
process [13–18]. In the local-dependence models, theoretical
analysis is feasible to aid numerical simulations to probe
the underlying dynamics. For example, it was found that the
breakdown of a network depends sensitively on the initial
disturbance even if it involves as low as a 0.1% fraction of
nodes [14]. However, a complete theoretical understanding of
cascading dynamics in complex systems in general remains a
challenging problem.
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Quite recently, cascading failures have been uncovered
in complex systems of interdependent networks that are of
a quite different nature but nonetheless interact with one
another. An example is a communication network and a power
grid [19], where the former relies on the latter to provide a
source of electricity but the latter depends on the former for
effective coordination of the electrical power distribution and
transmission. A phenomenon in this type of interdependent
networks pertinent to cascading dynamics is the crossover
from a first-order to a second-order phase transition when
the coupling strength among different networks is reduced
[20]. Analogous behavior has been found in a single network
composed of interdependent links, where the dynamics of a
pair of nodes at the ends of such a link depend on each other
and, as a result, the failure of one node can immediately trigger
failures of the other [21]. Note that this mechanism of failure
is different from the load-redistribution-based mechanism,
where the failure of one node would not necessarily cause
the immediate failure of those connected to it.

From the standpoint of physics, phase transitions are
fundamental to many types of condensed-matter systems,
and the crossover phenomenon, i.e., a change in the nature
of the transition as a system parameter varies continuously,
is interesting. Recent works [20,21] demonstrated that the
crossover in phase transitions of cascading failures can
arise in interdependent networks. In this paper, we study
cascading dynamics on complex networks in the absence
of interdependent links, and we find two types of phase
transitions. In particular, we find that networks consisting
of locally dependent nodes only can also exhibit first- and
second-order phase transitions. The critical point between the
two distinct types of phase transition is determined by the
vulnerability of nodes, which is quantified by the minimum
fraction of connections with neighbors required for survival (to
be defined below). For an arbitrary value of the vulnerability,
there exists a phase transition, first- or second-order, when
a random attack occurs. The phase transition is measured
by an order parameter, the normalized size of the giant
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component after the cascading dynamics ceases. There is
then a critical value of the vulnerability that separates first-
from second-order transitions. This value depends on the
network characteristics, and we will demonstrate that it can
be determined both numerically and theoretically. Our theory
also predicts, for each value of vulnerability in the regime of
first-order phase transition, the critical point of the transition
for different network structures. Our finding indicates that the
phenomenon of crossover in phase transitions can be more
general beyond the framework of interdependent networks,
and our computations and analysis provide a solid base for
observing the phenomenon in complex dynamical systems.

For illustrative purposes, we study the phase transition of
cascading dynamics on the standard Erdős-Rényi random net-
work with the Poisson degree distribution pk = e−〈k〉〈k〉k/k!,
where 〈k〉 characterizes the average connectivity of the
network. In general, there is physical or information flow from
the neighbors of a node back to the node itself, such as the
power supply in electric-power grids, investment in economic
networks, and packets in a computer network. Insufficient
support from neighbors can cause a node to fail or malfunction.
From a topological point of view, the number of neighbors of a
node can be used to characterize its supporting strength. We are
thus led to introduce a tolerance parameter β to characterize
the survival ability of a node in terms of the number of its
surviving neighbors. Note that the cascade model is subject
to the locally dependent dynamical process, in contrast to the
cascade model based on load redistribution. To be concrete, in
the model, an initial random attack removes a fraction 1 − p

of nodes and their links from the network of N nodes, so
p is the fraction of surviving nodes from the initial attack.
At each iteration, a node i with all its links is removed if
k′
i/ki < β, where ki is the original degree of node i, k′

i is its
current degree in this iteration so that k′

i/ki is the fraction of
the preserved links of i, and β characterizes the tolerance of
the node to failures of its neighbors. An identical value of β is
assumed for all nodes. Failures of some nodes may trigger the
removal of their neighbors and their neighbors’ neighbors, and
so on, generating a cascading process. This model resembles
the activation-process model proposed by Watts [13], which is
effectively governed by a type of cascading dynamics. After
a number of iterations of the dynamical process so described,
the fraction of the preserved links for each node is at least
β, therefore a further cascade of failures will not occur and
the network reaches a steady state that consists of several
isolated components. The connectivity of the residual network
is monitored, and the normalized size S1 of the giant (largest)
component as well as the final fraction S of the surviving nodes
are calculated.

Figure 1(a) shows S1 versus p for different values of β. For
the particular network setting, we observe that S1 approaches
zero continuously for β = 0.3 and 0.49 as p is decreased
from 1 to 0. However, for β = 0.51 and 0.7, S1 exhibits an
abrupt transition from a finite value to zero at a critical value
of p. These numerical results indicate that the behavior of S1

versus p could be a second-order phase transition for β = 0.49
and a first-order phase transition for β = 0.51. In order to
validate this hypothesis, we plot the log-log plot of S1 versus

FIG. 1. (Color online) Simulation results demonstrating first- and
second-order phase transitions on ER networks. Shown in panel (a)
are the fraction of nodes in the giant component after cascade, denoted
by S1, as a function of p for β = 0.3, 0.49, 0.51, and 0.7, respectively,
where the network size is 105. Shown in panel (b) are the log-log plot
of S1 vs the distance between p and the second-order phase-transition
point pII for different network sizes when β = 0.49. Shown in panel
(c) are the curves of S1 vs p depending on the network size N

for β = 0.51. All the results are obtained by averaging over 1000
independent network realizations, and the average degree is 〈k〉 = 4.

the distance between p and the second-order phase transition
point pII for different network sizes when β = 0.49, as shown
in Fig. 1(b) (the method of locating phase transition points
will be introduced later in the paper, and pII ≈ 0.554 for
β = 0.49). We see that S1 ∼ (p − pII )ε in the limit N → ∞,
with the critical exponent ε = 1.527 ± 0.006. In Fig. 1(c), we
see that when β = 0.51, all the curves intersect at one point,
and thus we can expect that S1 will jump to zero from that
point as N → ∞. These numerical results demonstrate that the
parameter β, which characterizes the node vulnerability, plays
an important role in both the robustness and breaking form of
the network against external perturbations. When β assumes
a relatively large value, even a small fraction of failing nodes
is able to disintegrate the network in the form of a first-order
phase transition, while for a relatively small value, the network
disintegrates continuously in the form of a second-order phase
transition.

In order to locate the transition point accurately to further
support our findings, we use the method developed by Parshani
et al. [21]. For a first-order phase transition, we use the number
of iterations (NOI) in the cascading process required for the
system to reach a steady state. For a second-order phase
transition, we calculate S2, the normalized size of the second
largest component after the cascading process is complete.
For a finite but large network, these quantities tend to exhibit
exceptionally large values at the transition points, providing a
way to estimate these points numerically. Figure 2(a) shows
the values of NOI versus p, from which the first-order phase-
transition point pI can be identified. Analogously, a peak in
S2 versus p is observed, as shown in Fig. 2(b), which gives the
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FIG. 2. (Color online) (a) For β = 0.6 (first-order phase tran-
sition), normalized size S of the final fraction of preserved nodes
(dotted line), normalized size of the giant component S1 (dashed
line) in the steady state, and NOI (full line) as a function of p. (b) For
β = 0.3 (second-order phase transition), S (dotted line), S1 (dashed
line), and the normalized size of the second largest component S2

(full line) in the steady state versus p. Panels (c) and (d) display the
scaling behaviors of NOI and S1 for different parameter values of β

at criticality, respectively. The results are obtained by averaging over
1000 independent network realizations, where the average degree of
networks is 4 and the network size is 105 for panels (a) and (b).

estimated value of the second-order phase-transition point pII .
From our simulations, we find that, at the first-order transition
point, NOI scales as Nγ , with γ = 0.293 ± 0.003, as shown in
Fig. 2(c), while for a second-order phase transition, S1 scales
as Nδ , with δ = −0.302 ± 0.005, as shown in Fig. 2(d). Note
that the scaling exponents γ and δ are slightly different for
different parameter values of β. Using the scaling behaviors of
NOI and S1, respectively, we can locate the points of first- and
second-order phase transitions more accurately. These results
further validate the critical crossover phenomenon indicated
in Fig. 1.

To provide more support for the phenomenon of crossover
in a phase transition, we compute the phase diagram associated
with cascading dynamics for networks with different values
of 〈k〉, as shown in Fig. 3. In each case, a critical value
βc can be identified, at which the phase transition switches
from second-order for β � βc to first-order for β > βc. From
Fig. 3(a), we also observe some staircase structures, which can
be attributed to the relatively narrow spectrum of node degrees
in random networks. Due to the fact that most node degrees
are about the mean value, and the vulnerability of nodes in
terms of their degrees is stepwise, most nodes are not sensitive
to small changes in β so that the robustness of the whole
network is not sensitive to β and exhibits staircase structures.
For larger average degrees, e.g., 〈k〉 = 8 and 10 [Figs. 3(c) and
3(d)], the staircase structures become obscure because a larger
average degree tends to smooth out the stepwise function of
node vulnerability. Note that for β = 0, cascading dynamics
does not occur as our model reduces to the model of site
percolation on random graphs. In this special case, the second-
order phase-transition point associated with percolation has
been analytically derived in Ref. [22], which is given by

FIG. 3. (Color online) Diagram of the phase-transition points,
pI in the first-order region (black dot) and pII in the second-order
region (red square) as a function of nodal vulnerability β for ER
networks with different values of 〈k〉: 4, 6, 8, and 10 for panels
(a)–(d), respectively. The striped region denotes the second-order
regime predicted by our theory. The simulation results are obtained
by averaging over 1000 independent network realizations and the
error bars are comparable to the size of the symbols.

pII = 1/〈k〉. This has indeed been observed in our compu-
tations. In addition, we find that βc tends to be negatively
correlated with 〈k〉.

We now derive a heuristic theory to explain the numerical
findings. Consider an arbitrary, uncorrelated complex random
network with degree distribution pk in the infinite-size limit.
The network can be regarded as having a purely branched
structure so that the probability that the subclusters are
connected by cycles is negligibly small. In this case, each
subcluster can be treated independently of the others. Follow-
ing the approach in the zero-temperature random-field Ising
model [23], we build up our theory based on a level-by-level
updating process on a hierarchical structure [14]. An arbitrary
node can be chosen and assigned to the top level, whose nearest
neighbors constitute the next lower level of the hierarchical
structure, and the neighbors of the nearest neighbors belong
to the following lower level, and so on. The nodes of the
entire network can then be placed at different levels of this
hierarchical structure. The bottom level is labeled level 1, and
the top level is labeled ∞. The updating process proceeds from
the bottom to the top level. For a random node in the level that
has not been updated, it is removed with probability 1 − p and
preserved with probability p. We define the probability xn that
a random node at level n is removed if this level has already
been updated. When the updating process reaches level n + 1,
we consider a preserved node at level n + 2 and randomly
choose a preserved node from its offspring in level n + 1. For
this chosen node with probability p̃k it has k neighbors, where
p̃k is the degree distribution of a node at the end of a randomly
chosen link: p̃k = kpk/〈k〉. The probability that the chosen
node has m removed nodes in its k − 1 offspring (at level n)
follows a binomial distribution:

P (m,k) = Cm
k−1x

m
n (1 − xn)k−1−m. (1)
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We then obtain the probability xn+1 that a random node at level
n + 1 of the hierarchical structure is removed, as follows:

xn+1 = 1 − p + p

∞∑
k=1

p̃k

k−1∑
m=0

Cm
k−1x

m
n (1 − xn)k−1−mF (m,k)

≡ g(xn,〈k〉,β,p),

where F (m,k) is the response function: F (m,k) = 1 for
m/k > 1 − β and F (m,k) = 0 otherwise. For n → ∞, x∞
reaches a fixed point. We then have x∞ = g(x∞,〈k〉,β,p).
Since the top node has degree k with probability pk , the average
final fraction S of the preserved nodes is given by

S = p

[
1 −

∞∑
k=1

pk

k∑
m=0

Cm
k xm

∞(1 − x∞)k−mF (m,k)

]
. (2)

To estimate the first-order transition point, we make use
of the observation that S1 depends on the size S of the
final fraction of preserved nodes. If the value of S changes
abruptly, S1 will also change sharply (cf. Fig. 2), since S1

is the giant cluster size in S [24]. Hence, the behavior of S

versus p gives the transition point. In particular, the value of
x∞ can be graphically solved by constructing the following
system [19,20]:

y = x,
(3)

y = g(x,〈k〉,β,p).

The solutions are presented by the intersections of these two
equations in the (x,y) plane. Since the degree distribution is
Poissonian, the curve y = g(x,〈k〉,β,p) can be obtained by
neglecting the probability of high degrees. There is a trivial
solution x∞ = 1, corresponding to the situation in which
all nodes are removed at each level, i.e., all nodes of the
network are removed. Figure 4(a) shows the solutions of
Eq. (3) for different values of p for β = 0.55. We see that
there is a tangent point between the curve and the line at
pc ≈ 0.8028. For p > pc, there are three intersections on the
plane and the solution is given by the lowest one; if p = pc,
the solution is given by the tangent point; while for p < pc,
there is only one intersection at x = 1, which determines the
solution. By reducing the value of p from pc, the solution
of Eq. (3) can change abruptly to nearly 1 from a nonzero

FIG. 4. (Color online) For 〈k〉 = 4, illustrations of graphical
solutions of Eq. (3). (a) First-order phase transition (β = 0.55),
where the black dot denotes the tangent point. (b) Second-order phase
transition (β = 0.5).

FIG. 5. (Color online) Comparison between the numerically
obtained first-order phase-transition points and theoretical predictions
for ER networks of different average degree 〈k〉 and nodal vulner-
abilities β. The symbols denote the numerical results and the lines
are from theory. The simulation results are obtained by averaging
over 1000 independent network realizations and the error bars are
comparable to the size of the symbols, where the network size is 105.

value at p = pc, which corresponds to a first-order phase
transition. The presence of the tangent point in the solution
plane thus indicates the existence of a first-order transition and,
simultaneously, gives the transition point. Figure 5 presents
a comparison of the first-order transition points obtained by
simulation and analysis. We observe a good agreement. To give
an example of a second-order phase transition, Fig. 4(b) shows
the solutions of Eq. (3) for different values of p for β = 0.5,
from which we can observe that there is only one solution
of Eq. (3) for any value of p. By reducing p, we observe
that the solution of Eq. (3) increases continually to 1, which
corresponds to a situation of second-order phase transition.
The switch point βc between the first- and second-order phase
transition so estimated is shown for networks of different
average connectivity 〈k〉 in Fig. 3, which is in good agreement
with results from numerical simulations.

In summary, we have studied cascading failures associated
with a local dependence on random networks without inter-
dependent links. Such links were assumed in interdependent
networks [19] and networks with interdependent groups [21],
where the failure of one node can cause the immediate failures
of its interdependent nodes. Systematic computations reveal
the existence of both first- and second-order phase transitions
and the crossover between the two in these models. However,
in our model, a node fails when the fraction of its surviving
neighbors is less than a tolerance parameter characterizing the
node vulnerability. We find that both types of phase transitions
exist and, as the tolerance parameter is increased through a
critical point, there is a switch from second- to first-order phase
transition associated with the cascading dynamics. Utilizing
the classical Ising model, we derive a heuristic theory to
estimate the various transition points, with good agreement
with numerics. We have also used small-world [25] and
scale-free [26] networks to reproduce the cascading dynamics
with our model, and we found similar transitions between first-
and second-order phase transitions. Our finding indicates that
the phenomenon of crossover in phase transitions underlying
cascading dynamics on complex networks is more general than
previously thought.
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